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SUMMARY

Weconductednumericalsimulationsof thewind-forcingof thesealevelvariationsin theNorth Sea

usingabarotropicoceanmodelwith realisticgeography,bathymetry,andboundaryconditions,to

examinetheforcingof the 14-month"pole tide" which is knownto bestrongalongtheDenmark-

Netherlandscoast.The simulationinput is the monthly-meansurfacewind stressfield from the

NationalCentersfor EnvironmentalPrediction (NCEP) reanalysis for the 40-year period 1958-1997.

The output sea level response was then compared with 10 coastal tide gauge records from the

Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several

prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months.

Correlation and spectral analyses show remarkable agreement between the model output and the

observations, particularly in the 14-month, or Chandler period band. The latter indicates that the

enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the

coastal setup response to wind stress forcing with a periodicity of 14 months. We fred no need to

invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to

explain the observations.

1. INTRODUCTION

In this paper we reconsider the following question: Is the anomalously large 14-month "pole tide"

observed at the tide gauge stations along the continental coast of the North Sea really the pole tide

that is somehow enhanced, or is it primarily of direct meteorological origin (and hence not really the

"pole tide") forced by the regional surface wind stress with a 14-month periodicity? Our results

strongly support the latter.

The polar motion of the earth's rotational axis sets up the pole tide in the ocean via the centrifugal

potential induced by the polar motion. In particular, the 14-month Chandler wobble in the polar

motion generates a 14-month pole tide. At this long period, there is little horizontal motion associated

with the pole tide and the height is close to the equilibrium value, or height the tide would have if all

the wobble potential energy were used to raise the sea level. Theoretical studies by Dickman (1985,

1988) and others have shown that the pole tide in the deep oceans should be near its equilibrium

value. The maximum amplitude of an equilibrium pole tide is about 0.5 cm at 45 ° latitude.

Independent data studies over the past several decades (for a review, see, e.g., Lambeck 1980, p.



212-214)haveshownthat while thepoletideamplitudeis generallyneartheequilibriumtidevalue,

it is anomalouslylarge,up to 3 cm, in partsof theNorth andBalticSeas.A salientfeaturein the

North Seais the enhanced14-monthtide along the continentalcoast known as the eastward

intensification(e.g.,Xie & Dickman1995),wherethetidal amplitudeincreasessharplyeastward

alongtheDenmark-Netherlandscoastto fivetimesitsequilibriumvalue(Miller & Wunsch1973,Fig.

2, reproducedin Lambeck, 1980,Fig. 8.1). A numberof studies,most recently by Ekman&

Stigebrandt(1990),haveconcludedthat thesecularchangein thepoletide,especiallyin theNorth

andBaltic Seas,isnot correlatedwith thepoletide forcing,andhavesuggesteda meteorological

componentto theforcing.

Analyticalandnumericalstudiesof thedynamicsof thepoletidein theNorth Seahavebeenmade

byWunsch(1974, 1986),Dickman& Preisig(1986),Carton& Wahr(1986),andXie & Dickman

(1995).ThesearementionedbyWunschetal. (1997) who discuss the possibility of a basin resonance

in the North Sea at the pole tide period. No satisfactory explanation has yet been given for the

enhancement of the North Sea pole tide along the continental coast as a result of the direct pole tide

forcing, the forcing by the global tide as an open boundary condition, or any possible resonance

phenomenon with a 14-month period. These possibilities were considered and rejected years ago by

Miller (1973), who then suggested that the wind stress was the most probable cause of the observed

14-month tide. Indeed, these studies collectively show that a pole tide enhancement cannot be derived

from any homogeneous system of equations describing the flow regime in the North Sea. An analytic

study by O'Connor (1986) showed that the eastward intensification can be explained in terms of an

inhomogeneous (forced) system of equations with a linear dynamical model for an idealized

rectangular basin, assuming that the forcing is a small change in the east-west wind stress component

near the 14-month Chandler period.

The North Sea climate is strongly influenced by the changes in the North Atlantic wind field

(WASA Group 1998). There is evidence for a periodic 14-month oscillation in sea surface pressure

over the North Atlantic, North Sea, and Baltic Sea regions, which is directly related to an oscillation

in the position of the Icelandic low as part of the North Atlantic Oscillation system (e.g., Wallace &

Gutzler 1981). This was demonstrated by Bryson & Starr (1977) who analyzed a National Center for

Atmospheric Research (NCAR) global monthly mean sea level pressure data set for the period

1900-1970. Other previous investigations into this phenomenon are listed by O'Connor (1986) and

Tsimplis, Flather & Vassie (1994). Two observational studies investigated periodicities in the



14-monthmeteorologicalforcingover the North Sea region and their correlation with the pole tide

observations there. The first study was by Trupin & Wahr (1990) who used the NCAR monthly mean

sea surface pressure data. They concluded that the pole tide in the North Sea was correlated with

the atmospheric pressure at that 14-month period. It might have been more appropriate to make a

correlation with the north-south pressure gradient in that region, since this determines the east-west

component of the wind through the geostrophic relation, modified by friction in the boundary layer.

In the second study, Tsimplis et al. (1994) used a 30-year time series of wind and pressure data from

the Norwegian Meteorological Institute and tidal specifications on the northern open boundary to run

a numerical tide and surge model of the North Sea. They concluded that the pole tide along the

continental coast was the result of a variation in the east-west wind stress with a 14-month

periodicity. However, there remains some controversy on whether the amplitude and phase of the

wind forcing spectral peak over the North Sea is sufficient to account for the sea level response near

the Chandler period. This is reflected in the comments of Wunsch et al. (1997) on the work of

Tsimplis et al. (1994).

We shall re-investigate this problem with a new, and hopefully more complete meteorological data

set and a North Sea ocean model. Historically, meteorological data sets have been compiled only

from observations. More recently, output of global numerical weather prediction models assimilating

all available observational data are being used to make climatologies. The data for the surface winds

are accepted as generally accurate because they are representative of the large scale flow. We shall

adopt the 40-year reanalysis product of the National Centers for Environmental Prediction (NCEP)

(Kalnay et al. 1996). Figure 1 depicts the geography of the region studied, as well as its average

NCEP surface wind stress field (see below), which we use to force a barotropic North Sea ocean

model generally following the approach of Tsimplis et al. (1994). We compare our model output, or

"computed" sea level with actual observations for 10 continental coastal stations from the Permanent

Service for Mean Sea Level (PSMSL). Good agreement is found, including in the Chandler frequency

band, indicating that the enhanced "pole tide" in the North Sea is specifically the coastal setup

response to wind stress forcing with a periodicity of 14 months.

2. OBSERVED SEA LEVELS

The PSMSL (URL http://www.nbi.ac.uk/psmsl/psmsl.info.html) archives monthly sea level records
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from tide gauge stations worldwide. For the North Sea, it provides 17 station records that started

prior to 1958 (and many more records that are shorter). Thirteen of them are on the continental coast,

and we examine 10 of these stations (Fig. 1) from the English Channel to Denmark, where the pole

tide amplitude becomes pronounced. They are, from north to south: Esbjerg, West-Terschelling,

Delfzijl, Harlingen, Den Helder, Ijmuiden, Hoek Van Holland, Maassluis, Vlissingen, Oostende (see

Table 1). The northern stations are known to have the strongest 14-month tide showing the eastward

intensification; the first five stations are thus combined later for the purpose of studying this signal.

3. COMPUTED SEA LEVELS

3.1 Atmospheric wind stress forcing

A description of the monthly mean wind directions and persistency at various locations over the

North Sea is given by Korevaar (1990). During the period 1961-1980 the prevailing annual wind

direction was from the SW to WNW. The seasonal variation was such that in summer the wind was

from WNW to NW, while in winter it was from SW to W. In the spring and fall, the winds can be

from several directions, and the monthly wind direction can have an easterly component. Also, the

strongest winds usually have a westerly component. This information is well known, but here we

want to make use of the latest meteorological data to search for interested periodicities in the wind

forcing of the North Sea.

The global data set of the NCEP reanalysis (Kalnay et al. 1996) for the 40-year period Jan. 1958 -

Dec. 1997 contains monthly mean data for a large number of variables. We first examine directly the

low level 1000 millibar (rob) winds in the air-sea boundary layer. The NCEP data set has the monthly

mean values for the eastward (u) and northward (v) horizontal components, given at 2.5 ° x 2.5 °

intervals. Those points over the North Sea and immediately surrounding region that are used in this

study are at the intersection of longitudes 5.0 ° W, 2.5 ° W, 0 °, 2.5 ° E, 5.0 ° E, 7.5 ° E, 10.0 ° E, and

latitudes 50.0 ° N, 52.5 ° N, 55.0 ° N, 57.5 ° N, 60.0 ° N.

Figure 2 summarizes the behavior of the NCEP u and v wind fields of the North Sea region,

averaged over the above grid points. Fig. 2(b) gives their maximum-entropy power spectra, where

the order of the corresponding autoregressive model is selected according to criteria in Marple

(1990), about 20% of the record length in our case. While not surprisingly both show strong annual



power, the u component has a rich ensemble of periodicities, including a prominent signal at the

Chandler period near 14 months. The latter, as we show later, is the major driving source of the

observed 14-month signal in the sea level. The v component did not exhibit strong periodicities other

than the annual.

The parameter we use to directly force the ocean model is the horizontal wind stress vector on

the sea surface, 1: = 0:x, zy), which is a quadratic function of the surface wind velocity V=(u,v):

z - p Cd V IVl (1)

where p is the surface layer air density and Cd is the drag coefficient. The air density varies only

slightly with air temperature and humidity. The drag coefficient is a function of both the wind speed

and the atmospheric surface layer stability. The air-sea temperature difference and heat flux increase

momentum transfer due to turbulence at the air-sea interface. These stability effects can cause the

drag coefficient to significantly vary seasonally and spatially. The NCEP global model uses a surface

layer parameterization to calculate the wind stress (e.g. Haltiner & Williams 1980, section 8-6). The

drag coefficient is calculated by the formula Cd = k2/[ln(z/Zo) - t_(z/L)] 2 , where k=0.4 is the von

Karman constant, z is the first model level (usually 30 - 40 m), Zo is the roughness length, L is the

Monin-Obukhov length scale which depends on turbulent fluxes, and t_ is an empirical stability

function. This latter depends on the Richardson number, which relates the turbulence production due

to wind shear to the turbulence damping due to the stratification, resulting from air-sea temperature

differences. In fact, the value of the 10 m wind velocity can be found from V = (V*/k) [ln(z/Zo) -

_(z/L)], where V* is the friction velocity, which can be related to the roughness length over water

by the Charnock relation Zo= 0.014 V* S/g, where g is the acceleration of gravity. The equations are

solved numerically by iteration.

The NCEP wind stress data are given at intervals of 1.875 ° in longitude and 1.904 ° in latitude.

The points over the North Sea and surrounding region that are used in this study are at the

intersections of longitudes 3.75 ° W, 1.875 ° W, 0 °, 1.875 ° E, 3.75 ° E, 5.625 ° E, 7.5 ° E, 9.375 ° E,

and latitudes 48.571 ° N, 50.475 ° N, 52.38 ° N, 54.285 ° N, 56.189 ° N, 58.094 ° N, 59.99 ° N. Fig. 1

shows the "prevailing", 40-year average of these monthly NCEP wind stress fields at these grid

points. This compares favorably with the annual mean wind stress over the North Sea given by

Hellerman (1967), who found some spatial variability in the annual wind stress pattern with the
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representativevaluesz_ = 0.062 nt m2, l:y = 0.021 nt m "2.

The NCEP wind stresses were calculated at 40-minute time step intervals, from which a daily

average was made. The daily wind stress output of the NCEP model was then averaged to form the

monthly mean values. Note that the monthly averaging must be invoked on the wind stress values

after they are computed from the wind velocity, rather than on the wind velocity itself prior to

calculation of wind stress. This is because the averaging of wind velocity would tend to reduce the

resultant wind stress due to the quadratic nature of Eq. 1 (see below for more discussion).

We made an alternate wind stress calculation as a check on the NCEP surface wind stress output.

This was for neutral stability conditions, where the air-sea temperature difference was neglected. This

has been done in previous studies when the air-sea temperatures and stability conditions were

unobtainable. The wind stress was calculated directly from equation (1) with the NCEP 1000 mb

winds used in place of l0 m surface winds, a neutral drag coefficient, and the constant air density 1.2

kg m 3. A climatology of the global ocean wind stress based on ECMWF 1000 mb winds was

produced by Trenberth, Large & Olson (1989) for the years 1980-1986, during which only the 1000

mb winds were available. As explained by Trenberth et al. (1989), the ship wind observations were

assigned to the 1000 mb level and effectively represent 10 m winds. However, an evaluation of

ECMWF-based climatological wind stress fields by Mestas-Nunez et al. (1994) concluded that the

1000 mb winds were more representative of winds at a height of 30 m, and the resulting wind stresses

of Trenberth et al. (1989) were too large by 50%.

The drag coefficient depends on the sea state (waves, swell) and is written as a linear function

of wind speed. A representative value for the North Sea determined from, e.g., Smith et al. (1992)

is Cr_ = (0.50 + 0.091 IVl ) x 103, where the wind speed is in ms "_. The wind stresses calculated under

neutral conditions with the 1000 mb mean monthly winds were smaller than the wind stresses

produced directly by the NCEP model by about a factor of five. This is explained by the fact that

the wind stress is proportional to the square (or even cube) of the wind speed, and so the momentum

input is strongly influenced by the high wind events. The monthly averaging done on the 1000 mb

wind velocity itself smooths out these high wind events (see above), and this is at least partly why our

neutral stability calculation significantly underpredicts the wind stress. Other researchers (e.g.,

Stammer et al. 1996) have noted that if an ocean model does not resolve eddies and have the correct

heat flux surface conditions, it can underpredict the sea level and its variability by a factor of over 2.

In our present application, we conclude that the NCEP wind stress calculation should be more



accurate.It will beadoptedfor ouroceanmodelforcing below.

3.2North Seadynamicsandmodel

Theflow in theNorth Seahasbeenstudiedusingnumericalmodels(seeSundermann& Lenz 1983

for areview).Thesemodelshavehadgreatsuccessinmodelingthesealevelandcurrentsin response

to tidalandwindforcing. Theyincludebothrealisticcoastlinesandbottomtopography.Tidesand

windforcedsurgesin theNorthSeacanbemodeledadequatelywith barotropicmodels,whichsolve

for thesealevelandtheverticallyaveragedcurrents (Flather1984;Verboom,deRonde& vanDikj

1992).ThenumericalmodelusedbyTsimpliset al. (1994) is described by Flather, Proctor & Wolf

(1991). We will use the numerical ocean model developed at Princeton University and described by

Blumberg & MeUor (1987), written in generalized coordinates. Since we desire to investigate the

wind forced sea level set up along the continental coast, we can use the barotropic subset of these

model equations. These are the flux form of the vertically integrated nonlinear continuity and

horizontal momentum equations, which are solved for the sea level and the horizontal components

of velocity. In spherical coordinates, the horizontal momentum equations consist of terms for the

local time derivative and horizontal advective terms, the Coriolis acceleration, sea level pressure

gradient, tangential wind stress on the sea surface, and quadratic bottom friction with a constant drag

coefficient of 0.0025. The system of equations is solved using a finite differencing scheme that is

centered in time and space on the Arakawa-C grid.

The model North Sea domain (Fig. 1) covers the region from 51 ° N to 59 ° N latitude, and from

3° W to 9 ° E longitude. There are 97 grid points in the north-south with a spacing of 5' in latitude

(9.27 km), and 73 grid points in the east-west with a spacing of 10' in longitude (9.55 - 11.66 km).

The bathymetry was digitized from the British Admiralty charts 2182A, 2182B, and 2182C. Over

most of the North Sea the depths were taken at intervals of 15' latitude by 30' longitude and then

interpolated to the finer grid with a bilinear interpolation scheme. However, in order to accurately

model the wind forced setup along the European coast, the depths either south of 54 ° N latitude or

east of 7 ° E longitude were digitized at intervals of 5' latitude and I0' longitude. The grid size did

not permit resolution of the barrier islands and channels to ports along the continental coast. Thus

comparisons with tide gage data at some ports were made with the water level data from the closest

model grid points. The shallowest depths recorded were 3 m along the continental coast, while the
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deepestwas570min theNorwegianTrench.Any grid pointdepthsshallowerthan100m alongthe

Norwegiancoastweremadelandpoints. Thedomainwasclosedalongthesouthern,westernand

easternboundariesto avoidproblemswithunnecessaryopenboundaries.A timestepof 60s isshort

enoughto ensurecomputationalstability.

Wenowdescribethedynamicsof aresidualcirculation,whichis themeanvelocityfield averaged

overa periodof at leastseveraldays,to canceltransitorywindcurrentsandtidal oscillations.The

flow in theNorthSeacanbeinfluencedbytheopenboundaryconditions,theatmosphericpressure

gradient(invertedbarometereffect),andthewind stress.Thework of Timmerman(1977,p.47-49),

Prandle(1975),andFlather(1984) indicatesthat thesealevelandcirculationin thesouthernNorth

Seaarepredominantlytheresultof thewind stress,ratherthantheatmosphericpressuregradient.

Tsimpliset a/. (1994) included the semi-diurnal and diurnal tidal forcing as open boundary conditions

and showed that this had no effect on the 14-month tide. Carton & Wahr (1986) showed that using

the deep ocean pole tide as an open boundary condition resulted in raising the elevation of the basin

without a sea level gradient along the continental coast. Accordingly, only the wind stress forcing

will be considered in this study.

When the winds are steady or slowly varying in time, the model is not sensitive to the open

northem boundary conditions which is removed from the region of our main interest, the continental

Denmark-Netherlands coast. The equations are linearized at the northern boundary, and a radiation

condition is used there: v = (g/H) la r ! - 1:x / ( po f H ), where H is the depth, r I is the sea level, po

is the seawater density, and f is the value of the Coriolis parameter at 59 ° N latitude. We have seen

that the seasonal and 14-month periodic wind stresses over the North Sea have a strong eastward

component. This boundary condition is particularly well suited for modeling the flow due to winds

with a strong eastward component, since it allows for southward Ekman drift into the North Sea

across most of the northern boundary, and northward geostrophic outflow near the eastern boundary,

as discussed by O'Connor (1986).

3.3 Model tests

The North Sea model used is a one layer barotropic hydrodynamic model forced only by the

wind stress and does not consider density changes. The amplitude of the ocean model sea level

depends on the model parameters (the bathyrnetry and coastline, bottom friction coefficient, and open
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boundaryconditionsatthenorthernboundary),inadditionto thewindstressforcing. The modelgrid

doesnotresolvethebarrierislandsandchannelsto portsalongthecontinentalcoast. In somecases

thetidegaugesareat ports insideof barrierislands.Presumably,theamplitudescould be improved

byengineeringthedragcoefficient,friction, andstationdepthsuntil betteragreementisreached,as

is typicallydonefor stormsurgemodels.In theoceantheannualcyclein sealevel is theresultof

both the wind stressforcing and thestericeffectsdue to densitychangesfrom temperatureand

salinityvariations.

Despitethis limitationof thebarotropicmodel,oneway to tell how "good" it is can be seen by

running the model with a constant annual average wind stress, and looking at the setup in sea level

along the continental coast. As a first test, the North Sea model was run with this constant 40-year

average NCEP wind stress forcing (Fig. 1). The average stress for NCEP grid points were

interpolated to the ocean model grid with a bilinear interpolation scheme. The model was then run

until a steady state resulted after three days. The resulting sea levels and currents are shown in Fig.

3, with an evident eastward intensification of sea level along the continental coast. In particular there

is a maximum setup of about 12 cm along the Denmark coast. These results are in very close

agreement with the results of Prandle (1978) and Davies (1982), who forced models of the North Sea

with an average annual wind stress. These results are also in agreement with the observational studies

of Pattullo et al. (1955) and Rossiter (1967), which show that the mean annual sea level and

amplitude of the seasonal oscillation exhibit a steep gradient along the Netherlands coast, which they

attributed to eastward winds and atmospheric pressure.

The residual circulation that results from these eastward winds is a counterclockwise gyre over

the North Sea, as a consequence of the slope of the bottom topography. This has been shown by

analytical models with north-south bottom slope (Fumes 1980, O'Connor 1986). However, realistic

bathymetry is necessary to obtain the strong sea level gradients along the continental coast. In the

deeper northern part, there is inflow due to Ekman transport. Water piles up in the shallow German

Bight and flows northward along the continental coast in a geostrophic boundary current. This gives

rise to a sea level gradient along the Netherlands coast. This is shown clearly in the numerical

modeling studies of Maier-Reimer (1977), Prandle (1978; 1984), Pingree & Griffiths (1980), Davies

(1982), and Backhaus & Maier-Reimer (1983). It should be noted that storm surge models of the

North Sea show that when there are strong persistent westerly winds for a day or longer, there is a

counterclockwise circulation and sea level setup similar to that described above, with strong sea level
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gradientalongthecontinentalcoast(Prandle1975,Timmerman1977,Mathisen& Johansen1983,

andBijl 1997).

In this paper,we only considerthe model responseto monthly-meanwind stress.Sincethe

responseof theshallowNorthSeato changingwindsis theperiodof thefirst externalmodesealevel

oscillation,on theorderof severaldays,wemayconsiderameanmonthlyflow to be in asteadystate.

This approachis justified becausewe are investigatingthe sealevelset up by wind forcing on

seasonalandlongertimescales,whichvarymuchmoreslowly thantheadjustmenttimeof theNorth

Seato changesin winds. For eachwind stressforcingthatis used,themodelisspunup from rest

by increasingthewindstressforcinglinearlyfromzero (ramping) over one inertial period (0.61 days)

and then keeping it constant. When the spatially constant annual average wind stress forcing was

used, the resulting model flow regime was almost in a steady state balance after one day, as evidenced

by plots of currents and sea level at one, three, and five days. For this reason, it was decided that

three days of simulation are enough to bring the model to a steady state with any monthly wind stress

forcing.

Thus, a three-day simulation with steady wind stress forcing was made for each of the 480

individual months Jan. 1958 through Dec. 1997. The values of the model water levels at the grid

points closest to selected coastal stations (see Fig. 1) were written out at the end of each three-day

simulation to represent the value for that month.

4. SEA LEVEL COMPARISONS

4.1 Seasonal signals

We now compare our North Sea model output, or the computed sea levels with those actual

observed at the 10 stations mentioned above. We first examine the seasonal signals at the annual and

semi-annual periods. To estimate the amplitude and phase of the seasonal signals, we simultaneously

least-squares fit sine and cosine functions with the annual and semi-annual periods to the 40-year time

series. The resultant sine and cosine functions are then converted into the form

(amplitude) .sin(wt+phase), where t=0 refers to the nominal epoch of January 15.5.

Fig. 4 shows a comparison between the computed and observed annual and semi-annual
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amplitude/phaseasa functionof latitudefor thetencoastalstations.It is seen that:

(i) The observed annual amplitudes are between 5-15 mm, increasing almost monotonically towards

the north and east. The corresponding computed amplitudes follow the same trend but are smaller

by about a factor of 3.

(ii) The observed semi-annual amplitudes are between 1-3 mm, also increasing towards the north and

east. The corresponding computed amplitudes follow the same trend but are smaller by a factor of

about 2.

(iii) In general the computed seasonal phase agrees well with the observed for both annual and semi-

annual signals, except for the annual phase of the southernmost stations.

Some of the main features above have been discussed previously by Tsimplis et al. (1994) and

Xie & Dickman (1996). The difference in the seasonal amplitudes is expected because our computed

values are only those caused by surface wind stress. There are other important factors that contribute

significantly to the seasonal signals that are observed. The most important is presumably the steric

effect due to thermal and salinity variations particularly in the surface water layers. The strength of

air pressure effects on the sea level, such as in the form of the inverted-barometer effect, also varies

seasonally. Furthermore, the annual and semi-annual ocean tides due to the sun's tidal force have

centimeter level amplitudes. Another interesting possible contributor is actually the pole tide: Since

the Earth's polar motion contains an annual wobble besides the 14-month Chandler wobble and nearly

equal in amplitude, the annual wobble should presumably generate a pole tide of a half centimeter

at maximum just like the Chandler wobble would.

It is interesting, then, that the seasonal phase estimates agree quite well, and that the computed

and observed seasonal amplitudes show the same geographical trend. This presumably indicates that

the sum of other seasonal effects are highly correlated with that of the wind-forcing contribution.

4.2 Non-seasonal, broad-band signal

Next, we remove by subtraction the seasonal signals from all (monthly) time series, in order to

concentrate on non-seasonaL broad-band signals. We also remove any linear trend in the time series,

whatever the cause of the trend may be. The latter may include eustatic sea level rise, post-glacial or

local movements of the ground, or even systematic observational errors. These are outside the interest

of the present study.
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Comparingsuchnon-seasonalbroad-bandsignals,we find thefollowing:

(i) The computedsealevel variationagreesremarkablywell with theobservedat the northern

stations,while it becomessomewhatlargerthantheobservedinoverallamplitudefor thesouthern

stations.This is evidentin Fig.5 (andTable 1below).

(ii) Table1liststhecorrelationcoefficientsbetweenthecomputedandtheobservedtimeseries.The

geographicaltrendisobvious:thecorrelationisveryhighfor thenorthernstations,whiledecreases

rapidly toward the southernmoststations.The cross-correlationfunctions(not shown)all look

characteristicallysimilar to Fig.7 below.

(iii) Since thecross-correlationonly comparesthe "pattern" of the time seriesand conveysno

informationabouttheoverallsizeof theamplitude,weshouldcalculatetheratio [standarddeviation

of computedamplitude]/[standarddeviationof observedamplitude].Thelatterarealsolistedin Table

1.Theratio is closeto one,exceptfor thefew southernmoststations.

Findings(ii) and(iii) confirm (i) in aquantitativemanner.We concludeherethat,whileit tends

to over-predictstheamplitudefor thesouthernmoststations,ourNorth SeamodelusingNCEPwind

stressinputpredictswell thenon-seasonalsealevelvariationsalongtheDenmark-Netherlandscoast.

Thelatter is indeedwherethestrongest14-monthtide is found.

Thus, we now concentrateon thefive northernmoststations.We simplyaveragethefive time

seriesintoa"composite"series,andmakecomparisonsbetweenthecomputedandtheobservedsea

levels.Fig. 6 showsthetwo compositeseries;remarkablematchingisalreadyevident.Fig. 7 gives

their(time-domain)cross-con'elationasafunctionof timeshiftbetweenthetwo series.A sharppeak

atzerotime-shiftrepresentsacorrelationcoefficientashighas0.86.Thecorrelationdropsto near-

zero with time shifts of only 1 month (the time resolutionof our study)and longer.A spectral

decompositionof this correlationis givenin Fig. 8. It showsthe (frequency-domain)coherence

spectrumof thetwo compositeseries.Thecoherencespectrumis computedusingthemulti-taper

spectraltechnique(Thomson 1982; also,e.g., Chao & Eanes 1995),which provides robust,

minimum-leakagespectralestimates.Sevenorthogonaltaperswith time-bandwidthproductof 4n

were adopted.The coherenceacrossthe entire spectrumis muchhigher than, say, the 99%

confidencelevel(0.54in thepresentcase,seeChao& Eanes1995).Thephasedifferenceremainsno

morethan+_.20°.

Forthesamereasonasin Finding(iii) above,we conductacomparisonof the individualspectra.

Fig.9 showsthetwo Fourierpowerspectra,againcomputedbymeansof themulti-tapertechnique.
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ConsistentwithTsimpliset al.'s (1994) model results, a very good match is evident across the entire

spectral band to the Nyquist frequency, indicating the agreement of the power, or the size of the

amplitude of the two (composite) time series.

Alternatively, one can show the time-varying spectral behavior of a time series by way of its time-

frequency wavelet spectrum. The wavelet analysis was introduced to represent functions that are

localized in time and frequency (Morlet et al. 1982). Using the Morlet wavelet, the result is shown

in Fig. 10 (cf. Chao & Naito 1995). Here the contours indicate the strength of undulations at any

particular frequency (or period) as a function of time going horizontally on the plot. High contrasts

in shade indicate strong undulations; the brighter contour closures indicate positive amplitude and the

darker ones the negative amplitude. We have to an extent saturated the grey scale in order to bring

out the freer features.

Let's now examine Figs. 8-10 in more detail. In Fig. 8, a frequency band where the coherence

dips below 99% (and the associated phase shows some "anomalous" behavior) is around the biennial

period. This appears to be insignificant, however, as the signal power is rather low in this frequency

band (in fact, the lowest among the entire frequency band, see Fig. 9a). It simply stems from low

signal-to-noise ratio in this band and the resultant numerical instability. The same applies to the zero

and near-zero frequencies, because the mean and a linear trend have been removed beforehand.

Figs. 9 and 10 reveal some interesting periodicities in the sea level records. There are prominent

spectral peaks and strong undulations common to both the computed and observed sea levels at

periods of around 7 years, 3 years (especially during the first half of the records), 14 months, 9

months, and 6.5 months. They all correspond to the peaks detected in the original eastward wind in

Fig. 2, except the 7-year quasi-periodicity. As stated earlier, these features presumably are part of the

regional climatology associated with the North Atlantic Oscillation system. Note that the 6.5 month

is close to half the 14-month periodicity and the 7-month quasi-periodicity reported by Naito &

Kikuchi (1992) in global atmospheric angular momentum.

The 7-year quasi-periodicity is relatively weak in our computed output, and certainly much

weaker than the observed (see Fig. 9). The corresponding band, in fact, is the only frequency band

where exists a major discrepancy in the spectral comparison of Fig. 9. The interesting feature,

however, is that their relative behavior around this period seems highly correlated as revealed by the

high coherence (Fig. 9) and similar wavelet spectra (Fig. 10). Thus, the causes for the discrepancy

may be the excessive low-frequency smoothing of the NCEP stress field, or the existence of other

14



unmodeledforcing mechanismwhich is highly correlatedwith the wind-forcing suchasair-sea

temperaturedifferences.In anyevent, this is outsideof our presentinterest.A relativelysmaller

discrepancyin Fig. 9 exists around the 9-month peak. The above causes may play a role, but note that

the relative size of the difference in amplitude is only on the order of 30%. At all other frequencies

the computed sea level matches the observed quite well. This is to be further discuss below.

5. CONCLUSIONS

We have used the 40-year (1958-1997), monthly surface stress field in the North Sea region derived

by NCEP as input to a barotropic North Sea model with realistic geography, bathymetry, and

boundary conditions. The output wind-driven sea level variations are compared with 10 tide gauge

records along the continental coast. Besides the strong seasonal variations, several prominent quasi-

periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months.

Correlation and spectral analyses show remarkable agreement between the model output and the

observations, across almost the entire frequency band (out to the Nyquist frequency), except at the

seasonal periods and periods longer than about 7 years. Our study only pertains to wind-driven sea

level variations. The seasonal discrepancy presumably originates from other meteorological causes

than wind-forcing that exist in the observation but are not modeled in our study. The long-period

discrepancy may also have meteorological causes.

Our focus here is the 14-month tide, which has been observed to be as large as 3 cm in amplitude

along the Denmark-Netherlands coast. In the past both wind-forcing and certain North-Sea

resonance-enhancement of the Chandler pole tide have been examined to explain this tide. Our

present findings strongly supports the wind-forcing mechanism as the major cause of the 14-month

tide. To be sure, a 14-month pole tide (and an annual pole tide for that matter) should in general be

present; it's equilibrium amplitude is no more than 0.5 cm. It was stated earlier that the computed sea

level amplitude depends on the model parameterization and the wind stress forcing. The fact that in

our simulation the amplitude matches across the entire frequency band indicates that the

parameterization adopted here is realistic, and having no preference or "favor" towards the matching

at the 14-month periodicity of interest here. In other words, we fred no evidence to support an

anomalous behavior of the North Sea in this particular band, and hence no need to invoke a

geophysical explanation involving resonance-enhancement of pole tide to explain the observations.
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Table1.ThetenNorthSeatidegaugestationsusedin thisstudy.Thelasttwo columnsrespectively
list thecorrelationcoetFacientsbetweenthecomputedandtheobservednon-seasonalsealevelsignals,
andtheratio[standarddeviationof computedamplitude]/[standarddeviationof observedamplitude].

Station

Esbjerg,Denmark

West-Terschelling,Netherlands

Delfzijl,Netherlands

Latitude

55°N 28'

53°N 22'

53°N 20'

Harlingen,Netherlands 53°N 10'

DenHelder,Netherlands 52°N 58'

Ijmuiden,Netherlands 52°N 28'

HoekVanHolland,Netherlands 51°N 59'

Longitude

80E26'

5°E 13'

6°E 56'

5°E 25'

40E45'

4°E 35'

40E7 '

Corr. Coef.

0.880

0.784

0.885

0.833

0.759

0.735

STD
ratio

0.90

1.07

0.95

0.93

1.11

1.26

1.350.730

Maassluis,Netherlands 51°N 55' 4°E 15' 0.712 1.24

Vlissingen,Netherlands 51°N 27' 3°E 36' 0.674 1.70

2°E 55' 0.462Oostende,Belgium 510N 14' 1.76
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FigureCaptions:

Figure1.(a)Mapof EuropeshowingtheNorth Searegionmodeledin this study.(b) Themodeled
NorthSearegionwithdepthcontoursinmeters.Thecrossesindicatelocationsof thetenPermanent
Servicefor MeanSeaLevel tidegaugestationson thecontinentalcoastexaminedin thisstudy(see
Table1),includingthenorthernfiveDenmark-Netherlandscoastalstations(markedby []), wherethe
14-monthtideis thestrongest(andusedto formthecompositerecordlater).Overlainasthick arrows
arethe40-year(1958-1997)averagedwind stressfield at NCEPgrid points.

Figure2.(a)The40-yeartimeseriesof thehorizontalwindvelocityin theNorth Searegion,spatially
averagedover theNCEPgrid points;u: eastwardcomponent;v: northwardcomponent(shiftedby
-20 rn/sin theplot). (b) Theirmaximum-entropypowerspectra.

Fig.3. Sealevelcontoursincentimeter,andcurrentsdrivenby the40-yearaverageNCEPwindstress
(Fig. 1),predictedby our North Seaoceanmodel.

Figure 4. (a) Comparisonof the annualsignalof computed(*) wind-drivensealevel with that
observed(o), in termsof amplitudeandphaseasafunctionof the latitudeof the tencoastalstations.
(b) Sameas(a) but for the semi-annual signals.

Figure 5. Comparison of computed (top curves, vertically shifted) wind-driven sea level with that

observed (bottom curves) after the removal of seasonal (annual and semi-annual) signals and a linear

trend, shown for four randomly selected stations.

Figure 6. Comparison of the computed (top curve, vertically shifted) and observed (bottom curve)

"composite" average sea level of the five Denmark-Netherlands coastal stations, after the removal

of seasonal (annual and semi-annual) signals and a linear trend.

Figure 7. The (time-domain) cross-correlation function between the two series in Fig. 6.

Figure 8. The (frequency-domain) coherence spectrum between the two series in Fig. 6. Upper panel:

coherence amplitude squared compared with the 99% confidence level; Lower panel: coherence

phase.

Figure 9. The (multi-tapered) power spectra for the two series in Fig. 6.

Fig. 10. The (time-frequency) wavelet spectra for the two series in Fig. 6 (upper panel: computed;

lower panel: observed). The contours indicate the strength of undulations at any particular frequency

(or period) as a function of time. The brighter contour closures indicate positive amplitude and the

darker ones the negative amplitude.
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